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Chapter 4: Trigonometry Plots 
 
Basic Trig Commands 
 
The trig commands are useful in plots and calculus.  For this tutorial we will deal with the 
plots first, since sine plots are common for particle in a box problems. 
 
The wave functions yn  that describe the motion of a particle inside a box resemble the 
normal modes of a standing wave.  This means that the nth harmonic has n - 1 nodes.  
Let's plot the first three waves.  Make the range equal to one sine period (2 p) and adjust 
the frequency of x to get the correct number of nodes.  Keep in mind that Mathematica 
evaluates the trig commands in radians, not degrees.  You can use the symbol p or Pi. 
 
For n = 1, y1 : 
 
n1 = Plot@Sin@0.5 ∗ xD, 8x, 0, 2 ∗π<D;  
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For n = 2, y2 : 
 
n2 = Plot@Sin@xD, 8x, 0, 2 ∗Pi<D;  
 

1 2 3 4 5 6

-1

-0.5

0.5

1

 



 28

For n = 3, y3 : 
 
n3 = Plot@Sin@1.5 ∗ xD, 8x, 0, 2 ∗Pi<D;  
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Now display the y2 and y3 plots together using Show: 
 
 
pic1 = Show@8n2, n3<D;  
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Dashed Lines 
 
As you can see, it's difficult to tell one plot from another.  Use: 
PlotStyle→Dashing[{0.02}] to redo one of the plots and then use Show to display them.  
Make sure to put list brackets inside the square brackets.  Also, the length of the dashed 
line can be adjusted for longer or shorter dashes. 
 
n2dash = Plot@Sin@xD, 8x, 0, 2 ∗Pi<, PlotStyle → Dashing@80.02<DD;  
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pic2 = Show@8n2dash, n3<D;  
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Now the plot is much easier to interpret. 
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Hue 
 
PlotStyle→Hue[value] will assign a color based on the hue value you put in.  Play with 
different values to get a sense of what numbers give what colors.  Some values are listed 
below. 

Green = 
1
3  

 
n2hue1 = Plot@Sin@xD, 8x, 0, 2 ∗Pi<, PlotStyle → Hue@1 ê 3DD;  
 

Blue = 
2
3  

 
n2hue2 = Plot@Sin@xD, 8x, 0, 2 ∗Pi<, PlotStyle → Hue@2 ê 3DD;  
 
Red = 1 
 
n2hue3 = Plot@Sin@xD, 8x, 0, 2 ∗Pi<, PlotStyle → Hue@1DD;  
 

Orange = 
1
10  

 
n2hue4 = Plot@Sin@xD, 8x, 0, 2 ∗Pi<, PlotStyle → Hue@1 ê 10DD;  
 

Purple = 
3
4  

 
n2hue5 = Plot@Sin@xD, 8x, 0, 2 ∗Pi<, PlotStyle → Hue@3 ê 4DD;  
 
Unless you have a color printer, it's best to stick with black and use dashed lines to 
separate graphs. 
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From Physical Chemistry, 6th Edition by Peter Atkins: 
 
Problem 14.9 
In the "Free Electron Molecular Orbital" (FEMO) theory, the electrons in a 
conjugated molecule are treated as independent particles in a box of length L.  
Sketch the form of the two occupied orbitals in butadiene predicted by this model 
and predict an equation for the minimum excitation energy of the molecule.   
 
The tetraene CH2=CHCH=CHCH=CHCH=CH2 can be treated as a box of length 
8R where R ≈140pm.  Calculate the minimum excitation energy of the molecule and 
sketch the HOMO and LUMO. 

Energy of a particle in a box: En  = 
n2  h2

8 m L2  

Change in energy: En+1 - En  

m = 9.10939 x 10-31 kg (mass of an electron) 

h = 6.62608 x 10-34 J s 

L = length of box (in meters) 

1 pm = 1 x 10-12m 

DE = h c
l

 

c = 2.998 x 108
 m/s 

l = wavelength (im meters) 

Butadiene: CH2=CH-CH=CH2 

Tetraene: CH2=CHCH=CHCH=CHCH=CH2 

yn = I 2
L

M 1
2 SinI n p x

L
M  

Butadiene has 4 p electrons (2 from each double bond).  Since the Pauli principle states 

that only 2 electrons can occupy each orbital, they must be in y1 and y2.  The minimum 

excitation energy is the energy required to excite an electron from the HOMO to the 

LUMO.  For butadiene it's y2Æ y3 (otherwise known as n = 2 Æ n = 3).  Sketch the 

wave functions of the two occupied orbitals and write an equation for ∆E. 

Tetraene has 8 p electrons.  If 2 electrons lie in each orbital, what must be the HOMO 

and LUMO?  Plot the HOMO and LUMO orbitals together on one graph.  Use the 

minimum excitation energy to calculate the wavelength of the emitted photon as the 

electron falls from LUMO to HOMO.



 32

Answer: Problem 14.9 

 
For butadiene: 
 
Plot of y1 : 
 
plot1 = Plot@Sin@0.5 xD, 8x, 0, 2 π<D;  
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Plot of y2 : HOMO 
 
plot2 = Plot@Sin@xD, 8x, 0, 2 π<D;  
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Define a function called deltaE to calculate the minimum excitation energy: 
 
deltaE@nLUMO_, nHOMO_, L_D := HnLUMO2 − nHOMO2L ∗h2 ê H8 ∗m ∗ L2L  
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Since we're only writing an equation, we do not need to plug in the values of h, m or L.  
We only need the values of nFinal and nInitial: 
 
nLUMO = 3;
nHOMO = 2;
deltaE@nLUMO, nHOMO, LD;
Print@"Minimum excitation energy for butadiene = ", %D  
Minimum excitation energy for butadiene =

5 h2

8 L2 m  
 
For the tetraene: 
 
Plot of y4 : 
 
plot3 = Plot@Sin@2 xD, 8x, 0, 2 π<, PlotStyle → Dashing@80.02<D,

DisplayFunction → IdentityD;  
 
Plot of y5 : HOMO 
 
plot4 = Plot@Sin@2.5 xD, 8x, 0, 2 π<, DisplayFunction → IdentityD;  
 
Plot of y4 (dashed line) and y5 (solid line): 
 
plot5 = Show@8plot3, plot4<, DisplayFunction → $DisplayFunctionD;  
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Use the deltaE function to calculate the minimum excitation energy in joules.  Make sure 
to define all the constants with the proper units.  You can substitute kg m2 s-2 for J at the 
end using: /. kg m2 s-2 ÆJ 
 
nLUMO = 5;
nHOMO = 4;
h = 6.62608 ∗ 10−34 kg m2 s−1;
mass = 9.10939 ∗ 10−31 kg;
r = 140 ∗ 10−12 m;
L = 8 ∗ r;
energy = deltaE@nLUMO, nHOMO, LD ê. kg m2 s−2 → J;
Print@"The minimum excitation energy for the tetraene = ",
energyD  

The minimum excitation energy for the tetraene = 4.32256 × 10−19 J  
 
Calculate the wavelength l in nm: 
 
c = 3.0 ∗ 108 m s−1;
λmeter = h ∗ c ê energy;
λnm = λmeter ∗ 109 nm ê m;
Print@"The wavelength of the emitted photon is = ", λnmD  
 
The wavelength of the emitted photon is = 459.872 nm  
 
That wavelength corresponds to blue light so the compound will appear orange. 


