
 21

Chapter 3: Solving Algebraic Equations

Solve

Given any algebraic equation, Mathematica can solve for the variable. We define a
function called eqn1 and we want the value of x when eqn1 equals 4. Note the use of the
double equals sign ==. This symbolizes an equality, while a single equals sign stands for
an assignment.

eqn1 = 2 x + 3;
Solve@eqn1  4, xD
 99x →

1
2
==

Sometimes you need to solve for more than one variable. Remember that you need at
least one equation per variable. We define a second function called eqn2 and set that
equal to 7 to find x and y.

eqn2 = x + 3 y;
Solve@8eqn1  4, eqn2  7<, 8x, y<D
 99x →

1
2
, y →

13
6

==

Solve can also be used to find the roots of a polynomial:

poly1 = x^3 + 3 x^ 2 + 2;
Solve@poly1  0, xD
 99x → −1 −

1I2 −è 3 M1ê3 − I2 −è 3 M1ê3=,
9x → −1 +

1
2

I2 −è 3 M1ê3 I1 −  è 3 M + 1 +  è 3

2 I2 − è 3 M1ê3 =,9x → −1 +
1 −  è 3

2 I2 −è 3 M1ê3 +
1
2

I2 − è 3 M1ê3 I1 +  è 3 M==

 22

Flatten and First

The problem with Solve is that it'll give you ALL the possible solutions including the
imaginary ones. The answers are always given in a list, which can be difficult to read.
Use Flatten to remove the list brackets.

soln1 = Flatten@Solve@poly1  0, xDD 9x → −1 −

1I2 −è 3 M1ê3 − I2 −è 3 M1ê3,
x → −1 +

1
2

I2 −è 3 M1ê3 I1 −  è 3 M + 1 +  è 3

2 I2 − è 3 M1ê3 ,
x → −1 +

1 −  è 3

2 I2 −è 3 M1ê3 +
1
2

I2 − è 3 M1ê3 I1 +  è 3 M=

If the first solution is the one you want, you can use First to display only the first solution
of your list. Make sure to look at all the solutions before using this command.

soln2 = First@Solve@poly1  0, xDD 9x → −1 −

1I2 −è 3 M1ê3 − I2 −è 3 M1ê3=

A better way to use these commands is to put them after your input using double slanted
bars.

Solve@poly1  0, xD êê Flatten êê First
x → −1 −

1I2 −è 3 M1ê3 − I2 −è 3 M1ê3

NSolve

The first solution to eqn1 and eqn2 was given symbolically. Mathematica will not give
decimal answers without the N command. For a numerical approximation of an output
using Solve, the command is NSolve.

NSolve@poly1  0, xD êê Flatten êê First
x → −3.19582

Another way to do this is to put the N command at the end of the output:

Solve@poly1  0, xD êê Flatten êê First êê N
x → −3.19582

 23

FindRoot

Unlike Solve, FindRoot can only give one answer at a time. The answer that it gives is
based on your best guess as to the location of the root. This is best done using a plot
where you know the general value of the root. Using Plot, graph poly1 and adjust the
range of x to get a good approximation of the root.

Plot@poly1, 8x, −4, 3<D;

-4 -3 -2 -1 1 2 3

-2.5

2.5

5

7.5

10

The root looks to be close to x = -3. FindRoot requires three arguments: the function, the
variable, and the guess. The last two arguments must be in a list.

rootsoln = FindRoot@poly1  0, 8x, −3<D
 8x → −3.19582 <

Print@rootsoln, "is a solution to ", poly1, " = 0"D
 8x → −3.19582 <is a solution to 2 + 3 x2 + x3 = 0

 24

From Physical Chemistry, 6th Edition by Peter Atkins:

Exercise 1.12
The density of air at various temperatures is given below:

r, g/L 1.877 1.294 0.946

T, °C -85 0 100

Using Charles' Law, determine a value for the temperature, in °C at absolute zero.

Absolute zero is also known as 0 K.

Volume = 0 L at absolute zero by definition.

Assume a 1.000g sample of air and calculate the volume at each temperature using
density.

Make a list of volume and temperature values and transpose to get a list of {T, V} points.

Use ListPlot to scatter plot the points and fit an equation using Fit.

From the equation, use FindRoot or Solve to determine the root of T, when V = 0.

Finally, print out the answer with units of °C.

Density: ρ = mass

volume

Charles' Law:
V1
T1

 =
V2
T2

 25

Answer: Exercise 1.12

Make a list of densities and a list of temperatures:

ρ = 81.877, 1.294, 0.946<;
tempC = 8−85, 0, 100<;
vol = 1.000 ê ρ;
points = 8tempC, vol< 88−85, 0, 100<, 80.532765 , 0.772798 , 1.05708 <<

data = Transpose@pointsD 88−85, 0.532765 <, 80, 0.772798 <, 8100 , 1.05708 <<

Make a plot of the data list:

plot1 = ListPlot@data, PlotStyle → PointSize@0.02D,

AxesLabel → 8"Temp, °C", "Volume, L"<D;

-75 -50 -25 25 50 75 100
Temp , ¡C

0.6

0.7

0.8

0.9

Volume , L

Fit an equation to the points using Fit:

fiteqn = Fit@data, 81, x<, xD
0.773376 + 0.0028344 x

 26

Plot the equation and adjust the range until the line crosses the x-axis:
fitplot = Plot@fiteqn, 8x, −300, 100<D;

-300 -200 -100 100

0.2

0.4

0.6

0.8

1

Show@8plot1, fitplot<D;

-300 -200 -100 100
Temp , ¡C

0.2

0.4

0.6

0.8

1

Volume , L

Find the absolute zero temperature at 0 L using FindRoot:
abszero = FindRoot@fiteqn  0, 8x, −300<D 8x → −272.853 <

Print@"The temperature at absolute zero is ",
abszero, " °C"D

The temperature at absolute zero is 8x → −272.853 < °C

Or using Solve:
abszero = Solve@fiteqn  0, xD êê Flatten 8x → −272.853 <

Print@"The temperature at absolute zero is ", abszero,
" °C"D

The temperature at absolute zero is 8x → −272.853 < °C

