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Chapter 3: Solving Algebraic Equations 
 
Solve 
 
Given any algebraic equation, Mathematica can solve for the variable.  We define a 
function called eqn1 and we want the value of x when eqn1 equals 4.  Note the use of the 
double equals sign ==.  This symbolizes an equality, while a single equals sign stands for 
an assignment. 
 
eqn1 = 2 x + 3;
Solve@eqn1  4, xD  
 99x →

1
2
==

 
 
Sometimes you need to solve for more than one variable.  Remember that you need at 
least one equation per variable.  We define a second function called eqn2 and set that 
equal to 7 to find x and y. 
 
eqn2 = x + 3 y;
Solve@8eqn1  4, eqn2  7<, 8x, y<D  
 99x →

1
2
, y →

13
6

==
 

 
Solve can also be used to find the roots of a polynomial: 
 
poly1 = x^3 + 3 x^ 2 + 2;
Solve@poly1  0, xD  
 99x → −1 −

1I2 −è 3 M1ê3 − I2 −è 3 M1ê3=,
9x → −1 +

1
2

I2 −è 3 M1ê3 I1 −  è 3 M + 1 +  è 3

2 I2 − è 3 M1ê3 =,9x → −1 +
1 −  è 3

2 I2 −è 3 M1ê3 +
1
2

I2 − è 3 M1ê3 I1 +  è 3 M==
 



 22

Flatten and First 
 
The problem with Solve is that it'll give you ALL the possible solutions including the 
imaginary ones.  The answers are always given in a list, which can be difficult to read.  
Use Flatten to remove the list brackets.   
 
soln1 = Flatten@Solve@poly1  0, xDD  9x → −1 −

1I2 −è 3 M1ê3 − I2 −è 3 M1ê3,
x → −1 +

1
2

I2 −è 3 M1ê3 I1 −  è 3 M + 1 +  è 3

2 I2 − è 3 M1ê3 ,
x → −1 +

1 −  è 3

2 I2 −è 3 M1ê3 +
1
2

I2 − è 3 M1ê3 I1 +  è 3 M=
 

 
If the first solution is the one you want, you can use First to display only the first solution 
of your list.  Make sure to look at all the solutions before using this command. 
 
soln2 = First@Solve@poly1  0, xDD  9x → −1 −

1I2 −è 3 M1ê3 − I2 −è 3 M1ê3=
 

 
A better way to use these commands is to put them after your input using double slanted 
bars. 
 
Solve@poly1  0, xD êê Flatten êê First  
x → −1 −

1I2 −è 3 M1ê3 − I2 −è 3 M1ê3
 

 
NSolve 
 
The first solution to eqn1 and eqn2 was given symbolically.  Mathematica will not give 
decimal answers without the N command.  For a numerical approximation of an output 
using Solve, the command is NSolve. 
 
NSolve@poly1  0, xD êê Flatten êê First  
x → −3.19582  
 
Another way to do this is to put the N command at the end of the output: 
 
Solve@poly1  0, xD êê Flatten êê First êê N  
x → −3.19582  
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FindRoot 
 
Unlike Solve, FindRoot can only give one answer at a time.  The answer that it gives is 
based on your best guess as to the location of the root.  This is best done using a plot 
where you know the general value of the root.  Using Plot, graph poly1 and adjust the 
range of x to get a good approximation of the root. 
 
Plot@poly1, 8x, −4, 3<D;  
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The root looks to be close to x = -3.  FindRoot requires three arguments: the function, the 
variable, and the guess.  The last two arguments must be in a list. 
 
rootsoln = FindRoot@poly1  0, 8x, −3<D  
 8x → −3.19582 <  
 
Print@rootsoln, "is a solution to ", poly1, " = 0"D  
 8x → −3.19582 <is a solution to 2 + 3 x2 + x3 = 0  
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From Physical Chemistry, 6th Edition by Peter Atkins: 
 
Exercise 1.12 
The density of air at various temperatures is given below: 
 
r, g/L  1.877  1.294  0.946 

T, °C  -85  0  100   

 
Using Charles' Law, determine a value for the temperature, in °C at absolute zero. 
 
Absolute zero is also known as 0 K. 
 
Volume = 0 L at absolute zero by definition. 
 
Assume a 1.000g sample of air and calculate the volume at each temperature using 
density. 
 
Make a list of volume and temperature values and transpose to get a list of {T, V} points.   
 
Use ListPlot to scatter plot the points and fit an equation using Fit. 
 
From the equation, use FindRoot or Solve to determine the root of T, when V = 0.   
 
Finally, print out the answer with units of °C. 
 
Density:  ρ = mass

volume
 

 

Charles' Law: 
V1
T1

 = 
V2
T2
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Answer: Exercise 1.12 
 
Make a list of densities and a list of temperatures: 
 
ρ = 81.877, 1.294, 0.946<;
tempC = 8−85, 0, 100<;  
vol = 1.000 ê ρ;
points = 8tempC, vol<  88−85, 0, 100<, 80.532765 , 0.772798 , 1.05708 <<  
 
data = Transpose@pointsD  88−85, 0.532765 <, 80, 0.772798 <, 8100 , 1.05708 <<  
 
Make a plot of the data list: 
 
plot1 = ListPlot@data, PlotStyle → PointSize@0.02D,

AxesLabel → 8"Temp, °C", "Volume, L"<D;  
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Fit an equation to the points using Fit: 
 
fiteqn = Fit@data, 81, x<, xD  
0.773376 + 0.0028344 x  
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Plot the equation and adjust the range until the line crosses the x-axis: 
fitplot = Plot@fiteqn, 8x, −300, 100<D;  
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Show@8plot1, fitplot<D;  
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Find the absolute zero temperature at 0 L using FindRoot: 
abszero = FindRoot@fiteqn  0, 8x, −300<D  8x → −272.853 <  
 
Print@"The temperature at absolute zero is ",
abszero, " °C"D  

The temperature at absolute zero is 8x → −272.853 < °C  
 
Or using Solve: 
abszero = Solve@fiteqn  0, xD êê Flatten  8x → −272.853 <  
 
Print@"The temperature at absolute zero is ", abszero,
" °C"D  

The temperature at absolute zero is 8x → −272.853 < °C  


